
J Glob Optim (2008) 40:505–527
DOI 10.1007/s10898-006-9109-x

O R I G I NA L PA P E R

Box-constrained minimization reformulations
of complementarity problems in second-order cones

R. Andreani · A. Friedlander · M. P. Mello ·
S. A. Santos

Received: 16 October 2006 / Accepted: 17 October 2006 / Published online: 21 February 2007
© Springer Science+Business Media B.V. 2007

Abstract Reformulations of a generalization of a second-order cone complementarity
problem (GSOCCP) as optimization problems are introduced, which preserve differ-
entiability. Equivalence results are proved in the sense that the global minimizers of
the reformulations with zero objective value are solutions to the GSOCCP and vice
versa. Since the optimization problems involved include only simple constraints, a
whole range of minimization algorithms may be used to solve the equivalent prob-
lems. Taking into account that optimization algorithms usually seek stationary points,
a theoretical result is established that ensures equivalence between stationary points
of the reformulation and solutions to the GSOCCP. Numerical experiments are pre-
sented that illustrate the advantages and disadvantages of the reformulations.
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Given F, G : R
n → R

n, we consider the following generalized second-order cone
complementarity problem GSOCCP(F, G,K) of finding x ∈ R

n such that

G(x) ∈ K, F(x) ∈ K◦, F(x)TG(x) = 0, (1)
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where K is the convex cone

K =
⎧
⎨

⎩
x ∈ R

n | x2
1 ≥

n∑

j=2

a2
j x2

j , x1 ≥ 0

⎫
⎬

⎭

and its dual cone K◦ is defined by

K◦ = {x ∈ R
n | ∀y ∈ K, 〈x, y〉 ≥ 0}.

The case usually considered in the literature is to have ai = 1, for i = 1, . . . , n, that is,
K is a Lorentz cone. In some articles results are obtained for the case where K is the
Cartesian product of Lorentz cones.

If we let, without loss of generality, A = diag(1, −a2
2, −a2

3, . . . , −a2
p, 0, . . . , 0) (where

ai �= 0 for 2 ≤ i ≤ p), Ā = diag(1, −1/a2
2, . . . , −1/a2

p, 0, . . . , 0) and M = diag
(m1, . . . , mn), where mi = 0 for 1 ≤ i ≤ p and mi = 1 for i > p, the convex cones
considered may be expressed in matrix form as

K =
{

x ∈ R
n | 1

2
xTAx ≥ 0, x1 ≥ 0

}

and

K◦ =
{

x ∈ R
n | 1

2
xTĀx ≥ 0, x1 ≥ 0, Mx = 0

}

.

Note that AĀ = diag(1p, 0, . . . , 0) and AM = MA = ĀM = MĀ = 0, where 1p =
(1, . . . , 1) ∈ R

p. Of course, by a convenient scaling of x, we may assume ai = 1, for
i = 2, . . . , p. We do adopt this assumption henceforth to simplify notation even fur-
ther. Still the cone considered here is more general, because p may be strictly less
than n. This implies, in particular, that K◦ may be different from K.

The GSOCCP(F, G,K) is a difficult problem because, although K is a convex set,
there isn’t a really “nice” way of defining it. In the widely used definition K = {x ∈
R

n | gN(x) = −x1 + ‖(x2, . . . , xp)‖ ≤ 0}, the function gN in the constraint set is convex
but it is not differentiable at the origin. In the equivalent definition adopted herein,
namely K = {x ∈ R

n | x1 ≥ 0, gD(x) = −x2
1 + ‖(x2, . . . , xp)‖2 ≤ 0}, the two functions

that appear in the constraint set are smooth, but gD is not convex. Furthermore, at the
origin we have ∇gD(0) = 0, and thus the origin is not a regular point. Thus the task
of reformulating this problem via nonlinear programming is particularly challenging.

One important special case of GSOCCP is the Karush–Kuhn–Tucker (KKT) opti-
mality conditions for the second-order cone program (SOCP), that consists in a gen-
eralization of the linear programming problem where the positivity of the variables
is substituted by the requirement that the variables belong to a cone K. On the other
hand, if we allow K in (1) to be the Cartesian product of second-order cones, then the
nonlinear complementarity problem (NCP) is also a special case of GSOCCP. These
problems and their numerous applications are extensively discussed in [1,11,18].

We are interested in reformulations that preserve the smoothness properties of F
and G in (1). In [3] the authors analyzed the case whereK is a polyhedral cone. In [8,9],
smooth merit functions, based on the well known Fischer-Burmeister NCP-function
[12], are presented for the second-order cone complementarity problem (SOCCP):
finding orthogonal F(x) and G(x) belonging to K, a self-dual cone. Notice that this
precludes the case p < n. In particular, [8,9] focus on the case where K is the Cartesian
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product of Lorentz cones. The results obtained in these papers are extensions of the
results for the NCP in [10,14]. Nice properties of the FB-function are extended to the
SOCCP via the Jordan product, see [8]. The authors prove that if ∇F and −∇G are
column monotone, every stationary point of the merit function they propose solves
the SOCCP. In [9] similar results are obtained for a modification of the merit function
defined in [8], where the authors extend the results in [20]. The approach suggested
in [8] was implemented and compared with ours.

Hayashi et al. [16] focus on the special (SOCCP) where G(x) = x andK is the Carte-
sian product of Lorentz cones. They also employ results from Jordan algebra to con-
struct a nondifferentiable merit function. An algorithm is constructed that converges
quadratically to a solution of SOCCP under certain assumptions. The algorithm works
with a sequence of approximations to the original merit function, combining regular-
ization and smoothing strategies. This involves the introduction of two sequences of
parameters that are adjusted throughout the algorithm. The algorithm is tested on
several problems, some randomly generated and one nonlinear SOCCP. We solve a
subset of these problems in Sect. 4.4 using the approach proposed herein.

In this paper we construct two reformulations of the GSOCCP, using ten and five
extra variables per cone, respectively. Both are nonlinear minimization problems with
box constraints. The merit functions inherit the same degree of differentiability as the
original data. Any efficient bound constrained minimization algorithm for large scale
problems can be used to solve the reformulated problem. Our choice of code for the
numerical tests was just a matter of convenience. The strong points of our second
reformulation are the easiness of implementation, smoothness preservation and good
discrimination capacity, i.e., stationary points which are not solutions have high objec-
tive function values (in comparison with the threshold adopted) and thus do not lead
to “false positives.”

The paper is organized as follows. In Sect. 1 we introduce the first reformulation and
prove a global equivalence result. In Sect. 2 we discuss some computational aspects
and propose a second alternative reformulation. In Sect. 3 we give conditions under
which a stationary point of a problem originating from the first reformulation provides
a solution of the original GSOCCP. Section 4 presents numerical experiments which
include small problems, ana application of SOCP in grasping force optimization, sug-
gested in [18], with data adapted from [15], and ramdonly generated problems with
larger dimension, as in [16]. To conclude, Sect. 5 is dedicated to final remarks.

1 An equivalent reformulation

If x∗ is a solution of the generalized cone complementarity problem (1), then G(x∗)
and F(x∗) solve (2) and (3) below, respectively.

min 〈F(x∗), x〉,
s.t. x ∈ K,

(2)

and

min 〈G(x∗), x〉,
s.t. x ∈ K◦.

(3)

An approach that has worked before, e.g. in [3], was to formulate a merit function
that embodies the KKT conditions of either (2) or (3). This role is played by the
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functions f and g defined below. Consequently, in addition to the original set of vari-
ables, these merit functions also depend on an extra set, that includes the Lagrange
multipliers associated with (2) and (3), respectively. The ultimate objective is to show
that GSOCCP is equivalent to the problem of minimizing the merit function, in the
sense that, if GSOCCP has a solution then the merit function attains its lower bound
of zero and vice-versa. This involves, of course, being able to ascertain the existence
of Lagrange multipliers at the optimal solution to (2), or (3). The difficulty here is
that the origin does not satisfy any type of constraint qualification, see [4,5], since
∇gD(0) = 0. We make up for this lack of regularity by uniting the two functions in
a convex combination. Notice, however, that in the special case G(x) = x, matters
could be simplified by first verifying whether F(0) ∈ K◦, in which case x∗ = 0 solves
the generalized cone complementarity problem (1). If not, then the origin is not the
solution, and f alone could be used as a merit function.

Let

f (x, λ, µ, z, y) = ‖F(x) − λAG(x) − µe1‖2 +
(

1
2

G(x)TAG(x) − z
)2

+ (G1(x) − y)2 + (λz)2 + (µy)2 (4)

and

g(x, ξ , ν, w, s, ζ ) = ‖G(x) − ξĀF(x) − νe1 − Mζ‖2 +
(

1
2

F(x)TĀF(x) − w
)2

+ (F1(x) − s)2 + ‖MF(x)‖2 + (ξw)2 + (νs)2, (5)

where x, ζ ∈ R
n, λ, µ, z, y, ξ , ν, w, s ∈ R and e1 = (1, 0, . . . , 0)T ∈ R

n. Setting vf =
(λ, µ, z, y) and vg = (ξ , ν, w, s), we define φ(x, vf , vg, ζ , r) = r f (x, vf )+(1−r) g(x, vg, ζ ).
The optimization problem

min φ(x, vf , vg, ζ , r),
s.t. 1 ≥ r ≥ 0,

vf , vg ≥ 0.
(6)

is a reformulation of the GSOCCP(F, G,K) in the sense spelled out in the following
theorem.

Theorem 1 If (x∗, v∗
f , v∗

g, ζ ∗, r∗) is a global minimizer of (6) with objective value zero
then x∗ is a solution to GSOCCP(F, G,K).
Conversely, if x∗ is a solution to GSOCCP(F, G,K), then there exist

v∗
f , v∗

g ≥ 0, 1 ≥ r∗ ≥ 0 and ζ ∗

such that (x∗, v∗
f , v∗

g, ζ ∗, r∗) is a global minimizer of (6) with objective value zero.

Proof First of all, notice that, for fixed x, vf , vg, ζ , the objective function value, for
feasible values of r, is the convex combination of f (x, vf ) and g(x, vg, ζ ), that is, a
number on the line segment

[
min(f (x, vf ), g(x, vg, ζ )), max(f (x, vf ), g(x, vg, ζ ))

]
.

But the minimum value on this line segment is achieved at its left end. Therefore, min-
imizing the convex combination of f (x, vf ) and g(x, vg, ζ ) is equivalent to minimizing
the minimum of f (x, vf ) and g(x, vg, ζ ).
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Now, since f and g are nonnegative, the objective value is zero only if

f (x∗, v∗
f ) = 0 or g(x∗, v∗

g, ζ ∗) = 0.

First consider the case f (x∗, v∗
f ) = 0. Clearly G(x∗) ∈ K. Moreover,

F(x∗)TĀF(x∗) = (λ∗AG(x∗) + µ∗e1)
TĀ(λ∗AG(x∗) + µ∗e1)

= λ∗2G(x∗)TAĀAG(x∗) + 2λ∗µ∗G(x∗)TAĀe1 + µ∗2eT
1 Āe1

= λ∗2G(x∗)TAG(x∗) + 2λ∗µ∗G1(x
∗) + µ∗2

= 2λ∗2z∗ + 2λ∗µ∗y∗ + µ∗2 ≥ 0.

Also,

F1(x
∗) = λ∗G1(x

∗) + µ∗ = λ∗y∗ + µ∗ ≥ 0

and, for i > p, Fi(x∗) = λ∗aiiGi(x∗) = 0.
Therefore F(x∗) ∈ K◦. It remains to show that the complementarity condition is

satisfied:

F(x∗)TG(x∗) = (λ∗AG(x∗) + µ∗e1)
TG(x∗)

= λ∗G(x∗)TAG(x∗) + µ∗G1(x
∗)

= 2λ∗z∗ + µ∗y∗ = 0.

Now, assuming g(x∗, v∗
g, ζ ∗) = 0, it follows easily that F(x∗) ∈ K◦. In order to verify

that G(x∗) ∈ K, we calculate

G(x∗)TAG(x∗) = (ξ∗ĀF(x∗) + ν∗e1 + Mζ ∗)T A
(
ξ∗ĀF(x∗) + ν∗e1 + Mζ ∗)

= ξ∗2F(x∗)TĀAĀF(x∗) + ν∗2eT
1 Ae1 + ζ ∗TMAMζ ∗

+ 2ξ∗ν∗F(x∗)TĀAe1 + 2ξ∗F(x∗)TĀAMζ ∗ + 2ν∗eT
1 AMζ ∗

= ξ∗2F(x∗)TĀF(x∗) + ν∗2 + 0 + 2ξ∗ν∗F1(x
∗) + 0 + 0

= 2ξ∗2w∗ + ν∗2 + 2ξ∗ν∗s∗ = ν∗2 ≥ 0.

The nonnegativity of G(x∗)’s first component follows analogously

G1(x
∗) = ξ∗F1(x

∗) + ν∗ = ξ∗s∗ + ν∗ ≥ 0,

completing the proof that G(x∗) ∈ K.
Checking the complementarity condition:

F(x∗)TG(x∗) = F(x∗)T (ξ∗ĀF(x∗) + ν∗e1 + Mζ ∗)

= ξ∗F(x∗)TĀF(x∗) + ν∗F1(x
∗) + F(x∗)TMζ ∗

= 2ξ∗w∗ + ν∗s∗ + 0 = 0.

Conversely, suppose x∗ is a solution to the GSOCCP(F, G,K). The possible cases
are G(x∗) = 0 and G(x∗) �= 0. They are treated separately:

(a) Assume G(x∗) = 0. Let w∗ = 1/2 F(x∗)TĀF(x∗), s∗ = F1(x∗), and set all
remaining variables to zero. Using the fact that F(x∗) ∈ K◦, we conclude that
w∗, s∗ ≥ 0 and g(x∗, v∗

g, ζ ∗) = 0. Thus the objective value will be r∗f (x∗, v∗
f ) +

(1 − r∗)g(x∗, v∗
g, ζ ∗) = g(x∗, v∗

g, ζ ∗) = 0, a global minimum, since f and g are
nonnegative.
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(b) Suppose G(x∗) �= 0 and consider the optimization problem (2), rewritten below
for convenience.

Minimize F(x∗)Tu,

s.t.
1
2

uTAu ≥ 0,

u1 ≥ 0.

(7)

Since F(x∗) ∈ K◦, the objective function is nonnegative for a feasible u. Given that
x∗ is a solution to the GSOCCP(F, G,K), u∗ = G(x∗) satisfies the constraints and
is an optimal solution to (7). Notice that u∗

1 > 0, thus there is at most one active
constraint at u∗. If (u∗)TAu∗ > 0 then both constraints are superfluous and the
gradient of the objective must be zero at u∗, that is, F(x∗) = 0. If (u∗)TAu∗ = 0,
then the gradient of the unique active constraint is Au∗ = (u∗

1, . . .)T �= 0, forming,
thus, a linearly independent set, implying that constraint qualifications hold at u∗.
In both cases there exist Lagrange multipliers λ∗ ≥ 0 and µ∗ = 0 (since u∗

1 > 0)
such that

F(x∗) − λ∗AG(x∗) − µ∗e1 = 0,
λ∗

2
G(x∗)TAG(x∗) = 0,

G1(x
∗)µ∗ = 0.

Let z∗ = G(x∗)TAG(x∗)/2, y∗ = G1(x∗), r∗ = 1 and set all remaining variables
to zero. Taking into account that G(x∗) ∈ K, it follows that z∗ ≥ 0, y∗ ≥ 0 and
f (x∗, v∗

f ) = 0. Since the function g assumes nonnegative values only, r∗f (x∗, v∗
f ) +

(1 − r∗)g(x∗, v∗
g, ζ ∗) = f (x∗, v∗

f ) = 0 is the global minimum of (6).

Therefore, given a solution to the GSOCCP(F, G,K), we are able to construct an
optimal solution to (6) with objective value zero. �

Notice that Theorem 1 is easily generalized for the case where K is a Cartesian
product of cones. In this case φ would be replaced by a sum of like terms, one for each
cone.

2 A simple instance and an alternative formulation

The reformulation (6) was tested for the following instance of GSOCCP(F, G,K):

F(x) =
(

x1 + 1
x2 + 2

)

, G(x) =
(

x1
x2

)

and A = Ā =
(

1 0
0 −1

)

. (8)

Figure 1 below gives a graphical representation of this instance. The lighter cone
identifies the region {x | F(x) ∈ K◦}, the region {x | G(x) ∈ K} corresponds to the
intermediate shade of gray and their overlapping is indicated by the darkest shade.
The circle with center (−1/2, −1) and radius

√
5/2 is the loci of points satisfying the

orthogonality condition F(x)TG(x) = 0. Clearly, the unique solution to this instance
is the vertex of the darkest cone: (1/2, −1/2).

The code easywas used for this and all subsequent nonlinear optimizations. This is
a Fortran double-precision code for solving nonlinear programming problems, based
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Fig. 1 Simple instance

on augmented Lagrangian [17], trust region [13] and projected gradients combined
with a mild active set strategy [6]. It is available at http://www.ime.unicamp.br/∼mar-
tinez. The trust-region augmented Lagrangian implemented in easy formulates a
quadratic model of the augmented Lagrangian, which, in the case of the reformu-
lations considered herein, coincides with the objective function since there are no
explicit constraints (only simple bounds), and updates the model and the trust-region
at each outer iteration. Roughly speaking, the quadratic model uses a numerical
approximation of the Hessian at the current point. This quadratic model is optimized
by the quadratic solver, which combines conjugate gradient with a mild active set
strategy. The computational effort is expressed by the number of iterations of the
trust-region algorithm for simple-bounded minimization, functional evaluations per-
formed, iterations of the inner quadratic solver and matrix-vector products (MVP)
computed, denoted by ITBOX, FE, ITQUA and MVP, respectively. This choice of code
was purely a matter of convenience, it should be stressed that any other code for
bound constrained nonlinear optimization could be used.

Table 1 contains the outcomes obtained running easy on reformulation (6) of
problem (8) with 200 initial points (x0, v0

f , v0
g, ζ 0, r0), with x0 ramdomly generated in

the box
[−10, 10

] × [−10, 10
]

and remaining variables set to 0.5. The stopping crite-
rion was norm of projected gradient less than 10−8, achieved for 82% of the tests. The
remaining 18% stopped with too small a step (less than 10−8), meaning that possibly
the end point is close to a local minimizer. The column with header φ∗ contains the
final objective function value of (6).

The three types of end points obtained were I(0.5, −0.5), II(−1.0021, −1.9958), and
III(0.0000, −0.0387), with φ∗

I , φ∗
II and φ∗

III of order 10−20, 10−6 and 10−7, resp. The
unique solution (point I) was obtained in 59% of the tests. The remaining ended in
points close to (−1, −2) (17% to point II) or to (0,0) (25% to point III). It is worth
mentioning that of the 13% of tests that stopped with a too small step, 4.5% ended at
the solution, whereas the remaining 13.5% ended at point III.
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Table 1 Results for instance (8)—reformulation (6)

ITBOX FE ITQUA MVP φ∗

Minimum 7 9 35 56 0
Average 284.2 409.5 2366.4 3193.2
Maximum 1020 1470 24658 29207 2E−6

Despite the very small objective function values reached at points II and III, they
are not feasible for GSOCCP(F, G,K). At these points we have approximately orthog-
onality and membership in exactly one (but not both) of the cones. In fact, they are
far from the feasible set (the darkest cone in Fig. 1).

Consider, for instance, point II obtained in 17% of the tests. We observed that,
for this point, the corresponding final value r∗ = 0 was always achieved, and so the
objective value was equal to g(−1.0021, −1.9958) ≈ 10−6. The second and third terms
in the expression (5) of g(−1.0021, −1.9958) enforce the membership of F(x) in the
dual cone. Orthogonality is enforced by the terms (ξw)2 and (νs)2. But membership
of G(x) in K is enforced only indirectly by the first term, ‖G(x) − ξĀF(x) − Mζ‖2.
We can drive this term to zero (this was achieved by lowering the parameter used
as stopping criterion in easy) and still have G(x) outside K. For point III, since the
corresponding value r∗ = 1 was obtained and f (0.0000, −0.0387) ≈ 10−7, the previous
reasoning holds with g and G replaced by f and F, respectively.

Given that we are dealing with a difficult problem, with possibly many local optima,
it is not so bad to end in a point that is not a solution, but it is very bad to end at a
point that looks as if it is a solution, because the objective value is very small. After
all, algorithms for nonlinear problems will seldom arrive at the exact solution. In this
case, solutions with objective values close to zero may seem to be close to the global
solution. It would be preferable to have higher objective function values associated
with solutions II and III.

This phenomenon motivated the following equivalent reformulation. Given

�(x, λ, z, y, w, s) = 1
2

(

‖λF(x) − (1 − λ)AG(x)‖2 + (λw)2 + ((1 − λ)z)2

+
(

1
2 G(x)TAG(x) − z

)2 + (G1(x) − y)2

+
(

1
2 F(x)TĀF(x) − w

)2 + (F1(x) − s)2 + ‖MF(x)‖2
)

,

define

min �(x, λ, z, y, w, s),

s.t. 1 ≥ λ ≥ 0,
z, y, w, s ≥ 0.

(9)

By removing the multiplication factors r and 1 − r, membership in both cones is
directly enforced in the objective function. Next we state the equivalence between
GSOCCP(F, G,K) and problem (9). Extension to Cartesian product of cones is
straightforward.
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Theorem 2 If (x∗, λ∗, z∗, y∗, w∗, s∗) is a global minimizer of (9) with objective value
zero then x∗ is a solution to GSOCCP(F, G,K). Conversely, if x∗ is a solution to
GSOCCP(F, G,K), then there exist

z∗, y∗, w∗, s∗ ≥ 0, and 1 ≥ λ∗ ≥ 0

such that (x∗, λ∗, z∗, y∗, w∗, s∗) is a global minimizer of (9) with objective value zero.

Proof The proof is analogous to the one of Theorem 1. Only the converse statement
merits a few comments. First we recall that in the proof of Theorem 1 we showed that,
if G(x∗) �= 0 at a solution x∗, then there exists ε∗ ≥ 0 such that F(x∗) = ε∗AG(x∗).
Adapting that reasoning to the case F(x∗) �= 0, it can be shown that there exist ξ∗ ≥ 0
and ζ ∗ such that G(x∗) = ξ∗ĀF(x∗) + Mζ ∗. Multiplying the last equality by A we
obtain AG(x∗) = ξ∗diag(1p, 0, . . . , 0)F(x∗), which is the same as AG(x∗) = ξ∗F(x∗),
if F(x∗) ∈ K◦. Thus, at a solution x∗ to GSOCCP(F, G,K), the two cases may be
combined in the equality aF(x∗) = bAG(x∗), where both numbers a and b are non-
negative, and at least one may be assumed to be nonzero. Dividing both sides by the
positive number a + b we obtain λ∗ = a/(a + b) ∈ [0, 1] that will give part of the
solution to (9). The assignment of the other variables follows the scheme in the proof
of Theorem 1. �

Some of the extra variables in reformulation (6) were interpreted as Lagrange
multipliers of auxiliary optimization problems (2) and (3). In the interest of brevity,
Theorem 2 was proved using an adequate adaptation of the proof of Theorem 1. There
is, however, a purely algebraic motivation behind the λ variable in the first term of
the second reformulation (9), which could have been used instead in the proof of the
converse part of Theorem 2, see the Appendix.

3 Conditions on stationary points

From a practical point of view, once a solution of a reformulation is attained, one
can easily check whether its x-part is (close to) a solution to the original problem (1).
Now, most algorithms for nonlinear programming, when successful, end in stationary
points. Hence it is interesting, from the theoretical point of view, to establish condi-
tions under which a stationary point of the reformulation will have objective function
zero, and thus be a global solution thereof, containing a solution of (1). The next
theorem tackles this problem, regarding the first reformulation.

Theorem 3 Let (x∗, v∗
f , v∗

g, ζ ∗, r∗) be a stationary point of (6), and define

Hg = ∇F(x∗)−1∇G(x∗) − ξ∗Ā and Hf = ∇G(x∗)−1∇F(x∗) − λ∗A.

(a) If r∗ = 1 and Hf is positive definite then x∗ is a solution to GSOCCP.
(b) If r∗ = 0, and Hg is positive definite then x∗ is a solution to GSOCCP.
(c) If 0 < r∗ < 1 then φ(x∗, v∗

f , v∗
g, ζ ∗, r) is constant for 0 ≤ r ≤ 1 and

(i) if Hg or Hf are positive definite then x∗ is a solution to GSOCCP.
or

(ii) (∇xf (x∗, v∗
f ), 0, . . . , 0) is a descent direction for φ from (x∗, v∗

f , v∗
g, ζ ∗, 1) and

(∇xg(x∗, v∗
g, ζ ∗), 0, . . . , 0) is a descent direction for φ from (x∗, v∗

f , v∗
g, ζ ∗, 0).
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Proof Let

�1 = F(x∗) − λ∗AG(x∗) − µ∗e1,
�2 = 1

2 G(x∗)TAG(x∗) − z∗,
�3 = G1(x∗) − y∗,
�4 = G(x∗) − ξ∗ĀF(x∗) − ν∗e1 − Mζ ∗,
�5 = 1

2 F(x∗)TĀF(x∗) − w∗,
�6 = F1(x∗) − s∗,
�7 = MF(x∗).

The first order necessary optimality conditions (KKT) of (6) are

f (x∗, v∗
f ) − g(x∗, v∗

g, ζ ∗) − γ1 + γ2 = 0, (10)

γ1r = 0, γ2(1 − r) = 0, γ1 ≥ 0, γ2 ≥ 0, 0 ≤ r ≤ 1, (11)

r∇xf (x∗, v∗
f ) + (1 − r)∇xg(x∗, v∗

g, ζ ∗) = 0, (12)

− �T
1 AG(x∗) + (λ∗z∗)z∗ − θ1 = 0, λ∗θ1 = 0, λ∗ ≥ 0, θ1 ≥ 0, (13)

− �T
1 e1 + (µ∗y∗)y∗ − θ3 = 0, µ∗θ3 = 0, µ∗ ≥ 0, θ3 ≥ 0, (14)

− �2 + (λ∗z∗)λ∗ − θ2 = 0, z∗θ2 = 0, z∗ ≥ 0, θ2 ≥ 0, (15)

− �3 + (µ∗y∗)µ∗ − θ4 = 0, y∗θ4 = 0, y∗ ≥ 0, θ4 ≥ 0, (16)

− �T
4 ĀF(x∗) + (ξ∗w∗)w∗ − π1 = 0, ξ∗π1 = 0, ξ∗ ≥ 0, π1 ≥ 0, (17)

− �5 + (ξ∗w)ξ∗ − π2 = 0, w∗π2 = 0, w∗ ≥ 0, π2 ≥ 0, (18)

− �T
4 e1 + (ν∗s∗)s∗ − π3 = 0, ν∗π3 = 0, ν∗ ≥ 0, π3 ≥ 0, (19)

− �6 + (ν∗s∗)ν∗ − π4 = 0, s∗π4 = 0, s∗ ≥ 0, π4 ≥ 0, (20)

− M�4 = 0. (21)

(a) If r∗ = 1, by (12),

1
2
∇G(x∗)−1∇xf (x∗, v∗

f ) =
[
∇G(x∗)−1∇F(x∗) − λ∗A

]
�1 + �2AG(x∗) + �3e1

= Hf �1 + [AG(x∗)
]
�2 + �3e1 = 0. (22)

From (13) and (15) we get

�2
[
AG(x∗)

]T
�1 = (λ∗z∗)3 + θ1θ2, (23)

and (14) and (16) imply

�3eT
1 �1 = (µ∗y∗)3 + θ3θ4. (24)
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Premultiplying (22) by �1 we obtain

0 = �T
1 HT

f �1 + �T
1

[
AG(x∗)

]
�2 + �T

1 B�3 = �T
1 HT

f �1 + (λ∗z∗)3 + θ1 θ2︸ ︷︷ ︸
≥0

+ ((µ∗)Ty∗)3 + θ3 θ4
︸ ︷︷ ︸

≥0

. (25)

By (25) and the assumption that Hf is positive definite,

�1 = 0, λ∗z∗ = 0, (µ∗)Ty∗ = 0. (26)

Therefore, using (22) and (26), G1(x∗)�2 + �3 = 0 and Gi(x∗)�2 = 0, for i =
2, . . . , p. If, for some k = 2, . . . , p, Gk(x∗) �= 0, then �2 = 0, and necessarily also
�3 = 0, implying that φ(x∗, v∗

f , v∗
g, ζ ∗, r∗) = 0. If Gi(x∗) = 0 for i = 2, . . . , p, then

(i) If z∗ > 0, (26) and (15) imply θ2 = 0, �2 = −θ2 = 0 and, like before, �3 = 0
and φ(x∗, v∗

f , v∗
g, ζ ∗, r∗) = 0.

(ii) If z∗ = 0, by (15) and the definition of �2 we obtain

0 ≥ −θ2 = �2 = 1
2

G1(x
∗)2 ≥ 0 �⇒ �2 = 0, (27)

and again �3 = 0 and φ(x∗, v∗
f , v∗

g, ζ ∗, r∗) = 0.

(b) If r∗ = 0 by (11)

1
2
∇F(x∗)−1∇xg(x∗, v∗

g, ζ ∗) =
[
∇F(x∗)−1∇G(x∗)−ξ∗Ā

]
�4+�5ĀF(x∗)+�6e1+M�7

= Hg�4 + �5ĀF(x∗) + �6e1 + M�7 = 0. (28)

By (17)–(20)

�5
[
ĀF(x∗)

]T
�4 = (ξ∗w∗)3 + π1π2, (29)

�6eT
1 �4 = (ν∗s∗)3 + πT

3 π4. (30)

Premultiplying (28) by �4 and using (29), (30) and (21)

�T
4
[
Hg
]T

�4 + (ξ∗w∗)3 + π1π2 + (ν∗s∗)3 + πT
3 π4

︸ ︷︷ ︸
≥0

= 0. (31)

Therefore,

�4 = 0, ξ∗w∗ = 0 and (ν∗)Ts∗ = 0. (32)

Now, by (28) we get

�5ĀF(x∗) + �6e1 + M�7 = 0. (33)

The following equalities are a consequence of (28) and (33):

F1(x
∗)�5 + �6 = 0,

−Fi(x∗)�5 = 0, i = 2, . . . , p, (34)

Fi(x∗) = 0, i = p + 1, . . . , n.

These equalities then imply that �7 = 0.
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If, for some k = 2, . . . , p, Fk(x∗) �= 0, then �5 = 0, and it follows that �6 = 0 and
φ(x∗, v∗

f , v∗
g,

ζ ∗, r∗) = 0.
If Fi(x∗) = 0 for i = 2, . . . , p, then

(i) If w∗ > 0, by (32) and (19) we have that π2 = 0, �5 = −π2 = 0.
By (34), �6 = 0, and it follows that φ(x∗, v∗

f , v∗
g, ζ ∗, r∗) = 0.

(ii) If w∗ = 0, by the definition of �6 and (19), we have

0 ≥ −π2 = �5 = 1
2

F1(x
∗)2 ≥ 0 �⇒ �5 = 0. (35)

Again by (34), �6 = 0 and φ(x∗, v∗
f , v∗

g, ζ ∗, r∗) = 0.
(c) If 0 < r∗ < 1 by (10) and (11) then f (x∗, v∗

f ) = g(x∗, v∗
g, ζ ∗). By (12)

∇xf (x∗, v∗
f ) = (r − 1)

r
∇xg(x∗, v∗

g, ζ ∗). (36)

If ∇xf (x∗, v∗
f ) �= 0, taking r∗ = 0 or r∗ = 1, we have that (∇xf (x∗, v∗

f ), 0, . . . , 0) and
(∇xg(x∗, v∗

g, ζ ∗),
0, . . . , 0) are descent directions for φ at (x∗, v∗

f , v∗
g, ζ ∗, 1) and (x∗, v∗

f , v∗
g, ζ ∗, 0),

respectively. If ∇xf (x∗, v∗
f ) = 0 and Hg or Hf are positive definite the proof is

just as in items (a) or (b).

�

While the description adopted for cone K = {x ∈ R
n | xTAx/2 ≥ 0, x1 ≥ 0} has the

virtue of smoothness, it is nevertheless a nonconvex way of describing a convex set.
On the other hand, reformulation (6) is suggested by KKT conditions on auxiliary
optimization problems like (7), whose constraint set contains precisely the offending
nonconvex constraint uTAu/2 ≥ 0. The conditions imposed in Theorem 3 are direct
consequences of these choices.

4 Numerical experiments

All numerical experiments were carried out by solving the appropriate nonlinear
optimization problem in easy. Unfortunately, though not surprisingly, we could not
find in the literature classes of actual problems that require the general framework
considered here. Not one instance with F and G both nonlinear was encountered and
degenerate cones are not heard of. We did test our approach with the few available
examples, as detailed below.

In Sects. 4.1, 4.2 and 4.3, for the sake of comparison, we tested our reformulation
against the merit function �BF formulated in [8]. In this case the corresponding non-
linear optimization problem is unconstrained. Two hundred trials of all examples were
run, with same initial setup (original variables randomly set in the interval [−10, 10],
others set to 0.5). The notation employed in Table 1 is maintained.

Experiments comparing reformulations (6) (objective function φ) and (9) (objec-
tive function �) are reported in Sects. 4.1 and 4.2. The second reformulation proved
more robust, which led us to adopt it in the remaining tests.

In Sect. 4.3 we describe a larger example (27 original x variables), with a more
realistic flavor, coming from a problem in robotics. We compare the more successful
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Table 2 Results for instance (8)—objective �

ITBOX FE ITQUA MVP �∗

Minimum 6 7 26 34 1E−32
Average 11.3 15.4 70.2 102.8
Maximum 18 27 161 225 1E−17

reformulation (9) using merit function � with Chen and Tseng’s reformulation using
�BF. In this case the latter’s proved less efficient.

In Sect. 4.4 we tackle larger problems, randomly generated, and another nonlinear
small (five variables originally) one. The problems are described in [16], where they
are solved by an algorithm specifically tailored for the class of second-order cone
complementarity problems (SOCCP).

4.1 Affine bidimensional case

The first instance of GSOCCP(F, G,K) tested was (8). Results are given in previous
Table 1 and in Table 2 below. Runs using reformulation (9) converged to point I in
100% of the tests, and all the tests stopped with norm of the projected gradient less
than 10−8 for this formulation. The results using function �BF are reported in Table 3.
Convergence to point I occurred in all trials using �BF as well.

An additional comment deserves to be made concerning reformulation (6) and the
sufficient condition provided by Theorem 3. The Jacobians of functions F and G given
in (8) are the identity matrix. Analyzing matrices Hf and Hg at the end points, one
can see that, for r∗ = 1, Hf is never positive definite, whereas for r∗ = 0, Hg is positive
definite for 83 runs out of the 200 initial points. Therefore, the sufficient conditions of
Theorem 3 hold for 42% of these tests. It is worth mentioning that there were 34 runs
(17%) for which convergence to point I was obtained and r∗ = 0, without positive
definiteness of matrix Hg.

4.2 Affine functions of Peng and Yuan

The second instance of GSOCCP(F, G,K) tested was taken from [19, Problem 3]:

F(x) =

⎛

⎜
⎜
⎜
⎜
⎝

15x1 − 5x2 − x3 + 4x4 − 5x5
5x2 + x5

−x1 − 3x2 + 8x3 + 2x4 − 3x5
2x1 − 4x2 + 2x3 + 9x4 − 4x5

−5x2 + 10x5 − 1

⎞

⎟
⎟
⎟
⎟
⎠

, G(x) =

⎛

⎜
⎜
⎜
⎜
⎝

x1
x2
x3
x4
x5

⎞

⎟
⎟
⎟
⎟
⎠

(37)

with A = Ā = diag (1, −1, −1, −1, −1). Three distinct end points were obtained,
namely

(unique solution) I (0.049185, −0.0030997, 0.0096024, 0.0031883, 0.048033),
II (0.048919, −0.0031088, 0.0096054, 0.0032299, 0.048093),

and III (0.020424, −0.016125, 0.022867, 0.021211, 0.0879190).

Tables 4 and 5 summarize the results of 200 runs. For reformulation (6), 96% of tests
ended with norm of projected gradient less than 10−8, whereas 4% stopped with too
small a step (infinity norm smaller than 10−8). In terms of quality of results, 93.5% of
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Table 3 Results for instance (8)—objective �BF

ITBOX FE ITQUA MVP �BF

Minimum 5 6 6 12 0
Average 7.1 8.1 8.0 15.1
Maximum 8 9 11 19 5E−17

Table 4 Results for instance (37)—reformulation (6)

ITBOX FE ITQUA MVP φ∗

Minimum 31 44 238 483 1E−25
Average 220.3 319.8 2591.4 3504.3
Maximum 348 538 5645 7358 1E−8

Fig. 2 Test problem × log10(φ∗) (left) and test problem × log10(�∗) (right) for the 200 tests of
instance (37)

tests converged to the unique solution, with φ∗
I < 10−11, although only 56.5% reached

φ∗
I < 10−13, the same threshold obtained with reformulation (9). Point II was reached

for 2.5% of tests (φ∗
II ≈ 10−10) and point III for the remaining 4%, with φ∗

III ≈ 10−8.
As far as reformulation (9) is concerned, 100% of tests stopped with norm of pro-

jected gradient less than 10−8, 72% ended at point I (�∗
I < 10−13) and 28% at point III

(�∗
III > 10−7). Sorting the 200 final objective function values in ascending order and

ploting the resulting vector produced the graphs in Fig. 2, where it can be seen that
reformulation (9) produces a better discrimination between the solutions obtained.

In terms of success rates, reformulation (9) was much superior to reformulation
(6) in instance (8) (100% as opposed to 59%), but not so in instance (37) (72–93.5%).
Nevertheless, its reasonable success rate allied to its power to discriminate the desired
stationary points suggest a more robust character, further evidenced in the experi-
ments carried out in [2]. Thus, reformulation (6) will not be considered in the remaining
tests.

All trials with merit function �BF converged to Point I. Table 6 contains the relevant
data. The only drawback was the increased coding effort for the objective function
and gradient, since these functions are defined by parts.

For the two small examples (originally in two and five variables) described in this
and the previous section, better results were obtained using the merit function �BF.
This is not the case for the next problem.
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Table 5 Results for instance (37)—reformulation (9)

ITBOX FE ITQUA MVP �∗

Minimum 21 32 189 244 1E−27
Average 69.6 96.6 667.3 907.5
Maximum 262 389 2823 3904 1E−5

Table 6 Results for instance (37)—objective �BF

ITBOX FE ITQUA MVP �∗
BF

Minimum 12 13 30 42 1.57E−22
Average 18.3 21.3 49.6 77.4
Maximum 32 46 94 196 4E−17

4.3 Grasping force optimization

Grasp analysis is pivotal to the study of robotic systems with multi-fingered hands.
Han et al. [15] formulate optimization problems modeling several aspects of grasp
analysis (force closure, force feasibility and force optimization). The consideration of
nonlinear friction models leads to the introduction of second-order cone constraints
in these problems. Previously these were dealt with by means of linearization, which
simplified matters algorithmically speaking, but at a cost. If the linearization turns out
to be too loose a relaxation of the true nonlinear constraint, the solution obtained
may violate the latter. Once this problem is detected, the usual remedy is to refine
the approximation, increasing, perhaps prohibitively, the computational effort. The
concentrated research in SOCP of the last decade opened various alternative ways
of foregoing the linearization, taking the original nonlinear constraints directly into
account. In the grasp force optimization arena, we may cite the positive definiteness
formulation pioneered by Buss et al. [7] and the linear matrix inequality (LMI) frame-
work adopted by Han et al. [15]. While the former work included the development
of specific programs for solving the problems, the latter was able to apply existing
interior point software for a special class of convex optimization problems with LMI
constraints.

The grasp force optimization problem considered herein concerns a 3-D object
grasped by a mechanical hand, with several contact points between its fingers and
the object. The objective is to minimize some function of the contact forces subject
to restrictions which represent equilibrium conditions (external forces should be bal-
anced), admissibility (properties of the mechanism should be taken into account),
bounds on joint efforts and friction constraints. When the latter are modeled as sec-
ond-order cone constraints, the optimization problem falls into the SOCP category.
Typically the constraints contain linear equalities and inequalities, as well as cone
constraints, that is, the contact force vector must satisfy linear constraints and lie in
the Cartesian product of cones (uni-, three- or four-dimensional ones, depending on
whether the contact is, respectively, frictionless, point contact with friction, or a soft
finger contact with elliptic approximation). The objective function embodies the crite-
rion used to select the “most desirable” force vector, amongst the feasible ones. Thus
it may consist of a simple min/max criterion (one will find the “gentlest grasp” able to
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effectively hold the object), minimum weighted norm criterion, the maxdet criterion
of [15] (which induces robust choices of grasp forces with respect to the friction cone
constraints), etc.

Since the numerical experiments have so far indicated that the equivalent reformu-
lation (9) presented in Sect. 1 was more promising, we elected to solve the grasping
force problem only with this variant. Furthermore, the six equality constraints of our
example were taken into account by means of allowing for a degenerate cone, which
afforded greater efficiency, both in the problem formulation as well as in the numer-
ical performance. For the reformulation using merit function �BF, however, these
equations correspond to yet another cone, since degenerate cones are not allowed.

The grasping force optimization problem falls into the following framework:

min f Tx,
s.t. ‖Aix + bi‖ ≤ cT

i x + di, i = 1, . . . , �,
(38)

where f and x belong to R
n, Ai ∈ R

(ni−1)×n, bi ∈ R
ni−1, ci ∈ R

n and di ∈ R. Notice
that linear equality and inequality constraints can be put in the format considered
above, by letting the right-hand-side or the left-hand-side be zero, respectively. Its
dual problem is

minu,w
∑�

i=1(b
T
i ui + diwi),

s.t.
∑�

i=1(A
T
i ui + ciwi) = f ,

‖ui‖ ≤ wi, ui ∈ R
(ni−1), wi ∈ R, i = 1, . . . , �.

(39)

Letting Kni = {(ui, wi) ∈ R
ni−1 × R | wi ≥ ‖ui‖} and  = (u1, w1, . . . , u�, w�), the

second set of constraints in (39) becomes  ∈ K = Kn1 × · · · × Kn� and the dual
problem can be stated as

min gT ,
s.t. B = f ,

 ∈ K,
(40)

where g ∈ RL, B ∈ Rn×L, f ∈ R
n, L = n1+· · ·+n� and rank(B) = n. Let ̂ be such that

B̂ = f and Z ∈ R
L×(L−n) such that Range(Z) = Kernel(B). Define F(ξ) = ̂ + Zξ1

and G(ξ) = g +BTξ2, where ξ = (ξ1, ξ2) ∈ R
L−n ×R

n. Then duality theory [1] implies
that sufficient optimality conditions for the primal-dual pair (38)–(40) constitute the
GSOCCP(F, G,K). In fact, the latter complementarity problem generalizes linear
programming’s complementary slackness conditions.
Gentlest grasp force. The grasping force problem’s setup consists of a unit sphere
that is in contact with four mechanical fingers, as shown in Fig. 3, where the sphere’s
center coincides with the reference coordinate system’s origin. It is adapted from
[15]. A point contact with friction was assumed at all fingertips, with common friction
coefficient µ = 0.4.

The problem is to find contact forces xi ∈ R
3, for i = 1, . . . , 4, expressed in local

contact frames, such that the maximum of their normal components is minimized,
while obeying Coulomb’s friction law, maintaining static equilibrium and satisfying
upper and lower bounds:
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Fig. 3 Setup of grasping force problem

minx,t t

s.t. (xi)3 ≤ t, i = 1, . . . , 4 t≥maximum of normal components

‖((xi)1, (xi)2)‖ ≤ µ(xi)3, i = 1, . . . , 4 friction cone constraints

Gx + hext = 0 static equilibrium

−10 ≤ (xi)j ≤ 10, i = 1, . . . , 4, j = 1, 2, 3, bounds on forces,

(41)

where G ∈ R
6×12 is the grasp map, that transforms applied finger forces expressed in

local contact frames to resultant object wrenches. The resultant generalized contact
force Gx must balance the external load hT

ext = (2.1, −0.2, −4.3, 0.4, −1.5, 0.6) expe-
rienced by the object. Cone constraints allow us to remove most of the upper/lower
bounds, since they imply (xi)3 ≥ 0 and, on the other hand, (xi)3 ≤ 10 plus the cone
constraints imply |(xi)1,2| ≤ µ10 < 10.

The dual problem of (41) has 26 variables:  = (w1, …, w4, u11, u12, w5, u21, u22,
w6, u31, u32, w7, u41, u42, u43, u44, u45, u46, u47, u48, w8, w9, w10, w11, w12). The first four
variables in  are the dual variables associated with the inequalities involving t in (41),
and belong to K1 (the set of nonnegative reals). Then we have (u1, w5), (u2, w6) and
(u3, w7) ∈ K3, variables associated with the first three friction constraints. The cone
containing (u4, w8) is degenerate—{(u4, w8) | w8 ≥ ‖(u41, u42)‖}—and encompasses
the last friction constraint as well as the equilibrium equality constraints. The last
four variables are associated with the (remaining) upper bound constraints. Adapt-
ing reformulation (9) to this case, we end up with a box constrained problem on 62
variables. Numerical tests used same choice of initialization as previous ones. Success,
that is, objective function values less than or equal 10−15, was achieved in 194 out of
200 trials. Table 7 summarizes the performance and the plot of Fig. 4 shows the base
10 logarithm of the final objective function values in ascending order. The six values
corresponding to the trials that did not converge (�∗ = 1.28) to the global solution

1 We follow here the convention adopted in [18], where the last variable, instead of the first, is greater
than or equal to the norm of the remaining ones.
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Fig. 4 Test problem
× log10(�∗) (grasp problem)

Table 7 Grasp problem—objective �

ITBOX FE ITQUA MVP �∗

Minimum 20 28 769 989 2.58E−19
Average 36.6 50.3 2069.3 2462.6
Maximum 81 107 5950 6445 1.28

Fig. 5 Test problem
× log10(�∗

BF) (grasp problem)

are almost imperceptible, right above the horizontal axis. It should be noted, however,
that even in these cases easy ended in a stationary point, that is, the stopping criterion
was norm of projected gradient smaller than preset tolerance (10−8).

The optimization problem using �BF has 27 variables. There were 22 failures out
of 200 trials, almost a fourfold increase comparing to the reformulation using �. The
failures correspond to the dots in the upper right corner of the plot in Fig. 5. Further-
more, it should be noted that easy stopped unfavorably in 68 trials, that is, it stopped
due to lack of progress and not because the norm of the projected gradient was small.
The acknowledged successful trials correspond to the first 132 points in the plot, form-
ing an almost horizontal curve, before the first jump. Since easy was designed for
box-constrained optimization, large artificial boxes were defined in the coding of this
unconstrained problem. The failures are not related to these artificial boundaries. In
all cases the boundaries were never touched during the execution of the algorithm.
In the absence of active bounds, the quadratic solver reduces to a truncated Newton
method.

Concerning the comparison between the two reformulations, embodied by the
functions � and �BF, we point out that though there were fewer outer iterations
(ITBOX) and function evaluations (FE), see Tables 7 and 8, the computational effort
of the inner quadratic solver (ITQUA) and on the MVP was higher when optimizing
�BF. It is also interesting to notice the much larger range of variability in the statistics
of Table 8. The ratios max/min for the four markers on effort were 4.05, 3.82, 7.74, 6.52
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Table 8 Grasp problem—objective �BF

ITBOX FE ITQUA MVP �∗
BF

Minimum 9 19 325 436 7.65E−19
Average 25.7 42.3 3327.7 3461.4
Maximum 116 155 19620 20229 8.5636

for Table 7 and 12.90, 8.16, 60.40, 46.40 for Table 8, suggesting that the first approach
was more robust for this particular example.

The ratio ITQUA/ITBOX is an estimate of the number of iterations of the quadratic
solver. Theoretically, this inner algorithm should converge in at most n iterations,
where n is the dimension of the quadratic problem. However, it is well known that
the number of iterations may be much larger for ill conditioned quadratics. Calculat-
ing these ratios for the average figures in Tables 7 and 8 we obtain 56.5 and 129.5,
respectively. The first figure compares favorably with the dimension of the problem
(62), whereas the second is more than 10 times the corresponding dimension (27).
This may well be related to the fact that the function �BF does not have continuous
second derivatives.

Comparing the graphs in Figs. 4 and 5, we see that the first reformulation provides
a better discrimination of the results. Finally, we should mention that our intention
in considering the grasping problem was just to include a test problem with physical
appeal, in addition to the randomly generated or toy problems presented in the other
sections.

4.4 Test problems of Hayashi et al.

In their recent paper on SOCCP, Hayashi et al. [16] test their algorithm on classes
of monotone problems. We employ our approach in two of them. The first is a set of
problems randomly generated according to the recipe given in [16] and the second is
a nonlinear SOCCP. In these problems G(x) is the identity function and F(x) is affine
(= Mx + q) in the first set and nonlinear in the second. The cone K is the Lorentz
cone in R

n and the product of two Lorentz cones in R
3 × R

2, respectively. Hayashi
et al.’s optimality threshold is adopted, that is, a successful outcome is obtained when
the optimal objective function value �∗ is smaller than 10−16.

The matrix M and vector q are generated so that the problem is feasible, M is rank-
deficient positive semidefinite and there exists x̄ ∈ intK such that Mx̄ + q ∈ intK.
Tables 9 and 10 summarize the results of the two subsets of tests involving these
problems. In the first subset, n was kept constant and equal to 100, and the rank
of M varies from 10 to 99. Each instance was solved 100 times with different initial
points, randomly generated. The rate of success doesn’t seem to depend on the rank,
varying from 87% to 95%. In the second subset the dimension n assumes values 100,
…, 1, 000, and the rank of M is randomly chosen in the interval [0.9n, n − 1]. For each
value of n we solved 10 instances, using 10 randomly generated initial points for each
of them. We observed higher rates of success in the smaller dimensions. The discrimi-
nation property was maintained, the number of successes is practically invariant if the
threshold is increased to 10−5, so there is a clear distinction between stationary points
that correspond to global solutions and other endpoints. The nonlinear reformulation
(9) has n + 5 variables. The convenience of randomly generated problems quickly
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Table 9 Results for linear SOCCP’s with various degrees of rank deficiency

Rank 10 20 30 40 50 60 70 80 90 99

% success 87 93 94 95 95 91 90 94 93 89

Table 10 Results for linear SOCCP’s with various problem sizes

Dimension 100 200 300 400 500 600 700 800 900 1000

% success 89 74 68 56 56 53 40 45 37 31

leads to a wealth of data, awkward to report and not necessarily very enlightening.
Thus the more concise character of Tables 9 and 10, which could easily expand on
to many more tables, were we to provide the same level of detail as in the tables of
previous sections.

The nonlinear function used in the second set of tests is given by

F(x) =

⎛

⎜
⎜
⎜
⎜
⎝

24(2x1 − x2)
3 + exp(x1 − x3) − 4x4 + x5

−12(2x1 − x2)
3 + 3(3x2 + 5x3)/

√
1 + (3x2 + 5x3)2 − 6x4 − 7x5

− exp(x1 − x3) + 5(3x2 + 5x3)/
√

1 + (3x2 + 5x3)2 − 3x4 + 5x5
4x1 + 6x2 + 3x3 − 1
−x1 + 7x2 − 5x3 + 2

⎞

⎟
⎟
⎟
⎟
⎠

The algorithm converged either to x∗ = (0.23240, −0.073079, 0.22061, 0.53390,
−0.53390)T (the true solution), in 76% of the 200 trials, or to the stationary point x =
(0.16415, −0.073443, 0.26353, 0.53517, −0.25708)T , with optimal objective function
value of the order of 10−4, in the remaining 24%. The version of (9) correspond-
ing to this problem has 15 variables, the original five, and five extra ones for each
cone.

5 Conclusions

We proved that the GSOCCP can be reformulated as a box-constrained minimization
problem, preserving the smoothness of the original data. Furthermore, the implemen-
tation of the merit function is a straightforward task, with complexity closely related
to that of the functions of the original problem. We obtained sufficient conditions
under which a stationary point of the first reformulated problem is a global solution
and thus provides a solution of the GSOCCP.

The second reformulation introduced shares the first one’s format (box-constrained
minimization), but not the theoretical results concerning stationary points, see [2].
Nevertheless, its performance in the numerical experiments suggests a very desirable
feature: the elimination of “false positives,” those points that have very small objec-
tive function values and satisfy all kinds of stringent stopping criteria but yet are far
from actual solutions. We observed a better discrimination between true and false
solutions.

The merit function �BF of Chen and Tseng’s was also implemented and compared
with ours, using the same nonlinear code, the software easy. This reformulation was
more successful in the small problems (two and five variables) but less so in the larger
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(27 variables) one tested. The poor performance of easy in the optimization of �BF
in the larger problems of Sect. 4.3 indicates the inherent difficulty of this problem.
Despite the nice theoretical result concerning the optimality of its stationary points,
the topology of the objective function �BF proves to be a tall order for the code.
It seems that the algorithm is unable to travel far along the “narrow valleys” of the
objective function, zigzagging instead along its walls, finally stopping due to lack of
progress. This is a general feature of reformulations of complementarity and related
problems. We do not mean to suggest that there is a particular reformulation dra-
matically more efficient than the others. The point is to stress the possibility of using
reformulations as alternatives to solving the GSOCCP directly, and the appeal of our
approach is its straightforward use. Indeed, the implementation of �BF (and that of
its gradient) consists more of a challenge.

Higher dimensional tests were done using the recipe for randomly generated SOC-
CPs in [16]. The problems considered had G(x) = x and F(x) = Mx + q. The order of
the symmetric positive semidefinite M varied from 100 to 1,000 and it was constructed
so that its rank was deficient. The rate of success doesn’t seem to depend on the rank
but does deteriorate with the increase in dimension.

Apparently the reformulations considered herein result in “difficult” objective
functions, in the sense that they seem to exhibit narrow valleys, as mentioned above,
known obstacles for optimization algorithms. Nevertheless, the lack of good theoret-
ical results for the stationary points of � was somehow compensated by the good
behavior of its second derivative. This may be very relevant from a practical perspec-
tive, as evidenced in the numerical tests.

It is to be expected that algorithms tailored to the task should present a bet-
ter performance at solving SOCCPs than a general purpose nonlinear programming
code applied to a reformulation. It must be stressed, however, that our reformu-
lations encompass more general classes of problems (general nonlinear function
G and degenerated cone K), are easy to implement, do not require the tuning of
additional parameters, preserve the smoothness of the original data and provide
a good discrimination between stationary points that are global solutions and the
rest.
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Appendix

The proof of the converse part of Theorem 2 depends on the existence of an appro-
priately valued λ, obtained below in a purely algebraic manner, without recourse to
auxiliary optimization problems as done in the text.

Theorem 4 If y ∈ K, w ∈ K◦ and yTw = 0 then there exists λ ∈ [0, 1] such that

λw = (1 − λ)Ay. (42)

Furthermore, if w (resp., y) is in the relative interior of K◦ (resp., K) then λ = 0 (resp.,
λ = 1).
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Proof We denote by yi:j the subvector of y containing components yi, . . . , yj. With this
notation, K = {x ∈ R

n | x2
1 ≥ ‖x2:p‖2, x1 ≥ 0} and K◦ = {x ∈ R

n | x2
1 ≥ ‖x2:p‖2, x1 ≥

0, xp+1:n = 0}.
First assume that w belongs to the relative interior of K◦, that is, wTAw > 0, w1 > 0,

Mw = 0. Thus w2
1 > ‖w2:p‖2 ≥ 0 and wTy = 0 implies

y1 = −
p∑

i=2

wi

w1
yi = − 1

w1
〈w2:p, y2:p〉. (43)

Therefore, since y ∈ K, we have that

1

w2
1

〈w2:p, y2:p〉2 ≥ ‖y2:p‖2. (44)

But
1

w2
1

〈w2:p, y2:p〉2 = 1

w2
1

‖w2:p‖2‖y2:p‖2 cos2 θ . (45)

Substituting (45) in (44), we obtain

1

w2
1

‖w2:p‖2‖y2:p‖2 cos2 θ ≥ ‖y2:p‖2. (46)

Now if w2:p = 0 then y2:p = 0, and (43) implies y1:p = 0. If w2:p �= 0 and y2:p �= 0, from
(46) we obtain

cos2 θ ≥ w2
1

‖w2:p‖2 , (47)

an impossibility, since w in the relative interior of K◦ implies that the latter fraction is
greater than 1. Thus we conclude that y1:p = 0 and (42) is true with λ = 0.

Now assume that w does not belong to the relative interior of K◦. If w = 0, then
(42) is true with λ = 1. Consider the case w �= 0. The facts that w �= 0 and is not in
the relative interior imply w2

1 = ‖w2:p‖2, w1 > 0 and w2:p �= 0. Thus, orthogonality
between w and y implies (43), as before. If y2:p = 0, then y1 = 0 and (42) is true with
λ = 0. On the other hand, if y2:p �= 0, we may obtain (47), as above. This time, this
implies cos θ = ±1. Now

0 ≤ y1 = − 1
w1

‖w2:p‖ ‖y2:p‖ cos θ (48)

from which follows that cos θ = −1. Therefore there exists α > 0 such that

y2:p = −αw2:p (49)

and

y1 = − 1
w1

(−α)‖w2:p‖2 = αw1. (50)

Rewriting (49) and (50) we obtain

w = 1
α

Ay. (51)

Letting λ = (1 + 1/α)−1 we arrive at expression (42).
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The case where y is in the relative interior of K is similar to the first case consid-
ered, exchanging the roles of w and y. We have yTAy > 0, y1 > 0 and orthogonality
implying w1 = −(1/y1)〈w2:p, y2:p〉, from which we may conclude that w1:p = 0. Since
Mw = 0, relation (42) is satisfied with λ = 1. �
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